Dđạo Hàm Phân Số

Để tính đạo hàm của hàm phân thức hữu tỉ thì các bạn sử dụng phổ biến một công thức:

$left(dfracuv ight)’=dfracu’.v-u.v’v^2$

Một số dạng đặc biệt của hàm phân thức:

$ left (dfrac1x ight)’=dfrac-1x^2$; $ left (dfrac1u ight)’=dfrac-u’u^2$

Tuy nhiên cũng đều có một số hàm phân thức bạn có thể sử dụng những phương pháp tính đạo hàm nhanh.

Bạn đang xem: Dđạo hàm phân số

Thầy đã nói cụ thể trong từng dạng bên dưới nhé.

1. Đạo hàm của hàm phân thức bậc 1/ bậc 1

$y=dfracax+bcx+d$

Công thức tính nhanh đạo hàm: $y’=dfracad-bc(cx+d)^2$

Ví dụ 1: Tính đạo hàm của hàm số sau:a. $y=dfrac2x+34x+2$ b. $y=dfrac-x-22x+5$

Hướng dẫn:

a. $y=dfrac2x+34x+2$

=> $y’=dfrac(2x+3)’.(4x+2)-(2x+3).(4x+2)’(4x+2)^2$

=> $y’=dfrac2(2x+2)-(2x+3).4(4x+2)^2$

=> $y’=dfrac8x+4-8x-12(4x+2)^2$

=> $y’=dfrac-8(4x+2)^2$

Sử dụng cách làm tính nhanh đạo hàm:

$y’=dfrac2.2-3.4(4x+2)^2$ => $y’=dfrac-8(4x+2)^2$

b. $y=dfrac-x-22x+5$

=> $y’=dfrac(-x-2)’.(2x+5)-(-x-2)(2x+5)’(2x+5)^2$

=> $y’=dfrac-1.(2x+5)-(-x-2).2(2x+5)^2$

=> $y’=dfrac-2x-5+2x+4(2x+5)^2$

=> $y’=dfrac-1(2x+5)^2$

Sử dụng phương pháp nhanh tính đạo hàm:

$y= dfrac-x-22x+5$ => $y’=dfrac(-1).5-(-2).2(2x+5)^2=dfrac-5+4(2x+5)^2=dfrac-1(2x+5)^2$

2. Đạo hàm của hàm phân thức bậc 2/ bậc 1

$y=dfracax^2+bx+cdx+e$

Công thức tính cấp tốc đạo hàm:$y=dfracadx^2+2aex+be-cd(dx+e)^2$

Ví dụ 2: Tính đạo hàm của hàm số sau:a. $y=dfracx^2+2x+34x+5$b. $y=dfrac2x^2+3x-4-5x+6$

Hướng dẫn:

a.

Xem thêm: Ý Nghĩa Của Từ Thí Điểm Là Gì ? Ý Nghĩa Của Từ Thí Điểm Là Gì

$y’=dfrac(x^2+2x+3)’.(4x+5)-(x^2+2x+3)(4x+5)’(4x+5)^2$

=> $y’=dfrac(2x+2).(4x+5)-(x^2+2x+3).4(4x+5)^2$

=> $y’=dfrac8x^2+18x+10-4x^2-8x-12(4x+5)^2$

=> $y’=dfrac4x^2+10x-2(4x+5)^2$

Sử dụng bí quyết giải cấp tốc đạo hàm:

$y’=dfrac1.4x^2+2.1.5x+2.5-3.4(4x+5)^2=dfrac4x^2+10x-2(4x+5)^2$

b. $y’=dfrac(2x^2+3x-4)’.(-5x+6)-(2x^2+3x-4).(-5x+6)’(-5x+6)^2$

=> $y’=dfrac(4x+3).(-5x+6)-(2x^2+3x-4).(-5)(-5x+6)^2$

=> $y’=dfrac-20x^2+9x+18-(-10x^2-15x+20)(-5x+6)^2$

=> $y’=dfrac-20x^2+9x+18+10x^2+15x-20)(-5x+6)^2$

=> $y’=dfrac-10x^2+24x-2(-5x+6)^2$

Sử dụng bí quyết tính cấp tốc đạo hàm:

$y’=dfrac2.(-5)x^2+2.2.6x+3.6-(-4)(-5)(-5x+6)^2=dfrac-10x^2+24x-2(-5x+6)^2$

3. Đạo hàm của hàm phân thức bậc 2/ bậc 2

$y=dfraca_1x^2+b_1x+c_1a_2x^2+b_2x+c_2$

Công thức tính cấp tốc đạo hàm của hàm phân thức bậc 2/ bậc 2

*

=> $y’=dfrac(a_1b_2-a_2b_1)x^2+2(a_1c_2-a_2c_1)x+b_1c_2-b_2c_1(a_2x^2+b_2x+c_2)^2$

Ví dụ 3: Tính đạo hàm của hàm số sau:a. $y=dfracx^2+x-2-x^2+3x+2$

Ta có:

$y’=dfrac(x^2+x-2)’.(-x^2+3x+2)-(x^2+x-2).(-x^2+3x+2)’(-x^2+3x+2)^2$

=> $y’=dfrac(2x+1).(-x^2+3x+2)-(x^2+x-2).(-2x+3)(-x^2+3x+2)^2$

=> $y’=dfrac-2x^3+6x^2+4x-x^2+3x+2+2x^3-3x^2+2x^2-3x-4x+6(-x^2+3x+2)^2$

=> $y’=dfrac4x^2+8(-x^2+3x+2)^2$

Sử dụng công thức tính cấp tốc đạo hàm:

$y’=dfrac<1.3-1.(-1)>x^2+2<1.2-(-2)(-1)>x+<1.2-(-2).3> (-x^2+3x+2)^2 $

=> $y’=dfrac4x^2+8(-x^2+3x+2)^2$

4. Một vài trường hợp quan trọng khi tính đạo hàm của hàm phân thức

Ví dụ 4: Tính đạo hàm các hàm số sau:a. $y=dfrac2x^2-2x+3$b. $y=left(dfracx+23x-1 ight)^3$

Hướng dẫn:

a. $y’=dfrac-2.(x^2-2x+3)’(x^2-2x+3)^2=dfrac-2(2x-2)(x^2-2x+3)^2$

b. $y’=3.left(dfracx+23x-1 ight)^2left(dfracx+23x-1 ight)’= 3.left(dfracx+23x-1 ight)^2.dfrac-7(3x-1)^2 $

(ý này chúng ta áp dụng công thức đạo hàm $u^alpha=alpha.u^alpha-1.u’$ nhé)

Bài giảng bên trên cũng khá cụ thể và tương đối đầy đủ về các dạng toán tính đạo hàm của một vài hàm phân thức hữu tỉ. Nói bọn chúng để tính được đạo hàm dạng này thì các bạn chỉ cần sử dụng chung tốt nhất một công thức $(dfracuv)’$ là có thể tính dễ chịu rồi. Nếu các bạn có thêm phương pháp tính nào xuất xắc thì hãy chia sẻ dưới khung phản hồi nhé.